Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide

نویسندگان

  • P. A. Gerakines
  • M. H. Moore
چکیده

Hydrogen cyanide (HCN) has been identified in the gas phase of the interstellar medium as well as in the comae of several comets. Terrestrially, HCN is a key component in the synthesis of biologically important molecules such as amino acids. In this paper, we report the results of low-temperature (18 K) ice energetic processing experiments involving pure HCN and mixtures of HCN with H2O and NH3. Ice films, 0.1 to several microns in thickness, were exposed to either ultraviolet photons (110–250 nm) or 0.8-MeV protons to simulate the effects of space environments. Observed products include HCNO (isocyanic acid), NH4 (ammonium ion), CN− (cyanide ion), OCN− (cyanate ion), HCONH2 (formamide), and species spectrally similar to HCN polymers. Product formation rates and HCN destruction rates were determined where possible. Results are discussed in terms of astrophysical situations in the ISM and the Solar System where HCN would likely play an important role in prebiotic chemistry. These results imply that if HCN is present in icy mixtures representative of the ISM or in comets, it will be quickly converted into other species in energetic environments; pure HCN seems to be polymerized by incident radiation.  2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.

The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C₅H₄N₄) (adenine and guanine) and those based on pyrimidine (C₄H₄N₂) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent...

متن کامل

Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Proton Irradiation in Cosmic Ice Analogs

Ices at ∼15 K consisting of the polycyclic aromatic hydrocarbon coronene (C24H12) condensed either with H2O, CO2, or CO in the ratio of 1 : 100 or greater have been subjected to MeV proton bombardment from a Van de Graaff generator. The resulting reaction products have been examined by infrared transmissionreflection-transmission spectroscopy and by microprobe laser-desorption laser-ionization ...

متن کامل

The interstellar 4.62 micron band.

We present new 4.5-5.1 micron (2210-1970 cm-1) spectra of embedded protostars, W33 A, AFGL 961 E, AFGL 2136, NGC 7538 IRS 9, and Mon R2 IRS 2, which contain a broad absorption feature located near 4.62 micron (2165 cm-1), commonly referred to in the literature as the "X-C triple bond N" band. The observed peak positions and widths of the interstellar band agree to within 2.5 cm-1 and 5 cm-1, re...

متن کامل

Side Group Addition to the Polycyclic Aromatic Hydrocarbon Coronene by Ultraviolet Photolysis in Cosmic Ice Analogs

Ultraviolet photolysis of various coronene-ice mixtures at low temperature and pressure caused the addition of amino (”NH2), methyl (”CH3), methoxy (”OCH3), cyano/isocyano (”CN, ”NC), and acid (”COOH) functional groups to the polycyclic aromatic hydrocarbon (PAH) coronene (C24H12), in addition to previously reported alcohol (”OH) and ketone (>C»O) formation. This work represents the first exper...

متن کامل

UV photolysis of quinoline in interstellar ice analogs

available online at http://meteoritics.org 785 © The Meteoritical Society, 2006. Printed in USA. UV photolysis of quinoline in interstellar ice analogs Jamie E. ELSILA1*, Matthew R. HAMMOND2, Max P. BERNSTEIN1, Scott A. SANDFORD1, and Richard N. ZARE2 1NASA Ames Research Center, MS 245-6, Moffett Field, California 94035–1000, USA 2Department of Chemistry, Stanford University, Stanford, Californ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004